A Distributed Approach to IQM in MRI Ruby and JRuby

Background:

At my work, we have a challenge that we give all technical applicants:

Given an arbitrarily large data set, sort it and find the average. There’s a little
more to it than that, but the idea is that it tests your knowledge of memory use
and algorithms.

I’m not very good at algorithms, but | am good at brute forcing the shit out of
things, so | wondered: if | dispatch chunks of it to be calculated in parallel, could |
get a pretty close approximation, and could | make it go faster?

To get the idea going quickly, | used Ruby and the thread library for “parallel
processes”. | say that in quotes, though, because threads in MRI Ruby don’t
actually get executed in parallel. So I'm sort of interested in what results that will
net, and then compare it with a similar approach using true threads JRuby and
distributed processes in Elixir.

Plus, it gets me started playing with Excel really fast.

Estimated IQM refers to the IQM calculated using parallelism/distribution, while
real IQM refers to calculation on a single thread.

Comparing estimated IQM to real IQM, what is:

1. The effect of a growing set size on accuracy?

2. The effect of a growing set size on speed?

3. The effect of growing the number of parallel agents/processes on accuracy?
4. The effect of growing the number of parallel processing agents on speed?

Materials:

The data set is a set of N randomly generated numbers from 0 to N, with an
expected mean of N/2.

To calculate an IQM, one must sort the set, strip off upper and lower bounds,
apply a modifier depending on the size of the set, and averaging the inner range
along with that modifier.

TL,;DR — the IQM will be close to N/2 with a random distribution, but to get a
comparison of speed | had to calculate the IQM for both scenarios.

Also, in real life we won’t have a uniform distribution, but let’s play with it for now.
Methods:

To answer questions [1] and [2], the data set size was increased while the
sampling factor was held constant at 0.1. If we had a 10MB data set, we’d get:

10MB = 10 agents at 1MB each
Thus, the number of parallel agents is the inverse of the sampling factor. E.g.,

100MB set sampled at 0.01 results in 1MB chunks distributed across 100 agents,
and with a constant sampling factor, the size of the subsets scales linearly with
the data set size.

A sample size of N=20 was collected at each value for data set sizes ranging in
powers of 10 (logarithmically) from 1072 to 1077.

Each run, | recorded:

* Setsize

* Sampling factor

* Estimated IQM value
* Estimated IQM speed
* Real IQM value

* Real IQM speed

To get the estimated IQM standard deviation, the data set was kept constant
within populations to give me the same real IQM each time. The estimated IQM
calculation shuffled the data each run, as it would in the wild to promote uniform
distribution across parallel agents. This sacrifices some speed for accuracy.

To answer questions [3] and [4], the data set size was held constant at 106
while the sampling factor was increased logarithmically from 10/-5 to 10/-1,
resulting in 10 to 10,000 parallel agents.

At 10,000 agents, MRI Ruby would not run. Likely JRuby cannot perform under
this condition as well. | cannot make an educated guess for Elixir.

Results/Discussion:

MRI Ruby:
Set size vs Margin of error
1
1 10 100 1000 10000 100000 1000000
0.1 v
&
0.01 v
<
0.001 %

Figure 1. Processing in parallel with 10 agents; MRI Ruby

Accuracy scales with data set size. This is purely mathematical - we end up getting
subsets that more approximate the larger set.

Set size vs Latency (ms)

100

10 é
1 g ?
1 10 & 1000 10000 106000 1000000

0.1

&

Figure 2. Processing in parallel with 10 agents; MRI Ruby

For a little while, our performance is better but it quickly falls off and becomes far
worse than calculating IQM on a single thread.

Why is this? Perhaps it’s the shuffle before we dispatch a data subset to an agent.
Perhaps it’s the overhead of threads with more and more memory, without the
benefit of true parallel computation.

Agent pool vs Margin of error

0.04
0.035 <
0.03
0.025
0.02 ®
0.015
0.01
0.005 <&
0 Q

1 10 100 1000 10000

Figure 3. Processing in parallel with 1e6 data points ; MRI Ruby

Like Figure 1, this is purely mathematical. For a fixed size data set, the more agents
we have, the smaller their subset will be and the less their calculations will
approximate the larger data set.

Agent pool vs Latency (ms)

10000

1000 o
100 e

10

1 10 100 1000 10000

Figure 4. Processing in parallel with 1e6 data points; MRI Ruby

Again, with MRI Ruby we see an increase in latency with distributed processing as
we increase the number of agents. At the high end, we’re seeing an extra 75 seconds
for distributed calculation that takes its local counterpart only 2 seconds to perform.

Results/Discussion (cont.):

JRuby:

Set size vs Margin of error

1\

1 10 100 1000 10000 100000 1000000
0.1 <

Q
Q
0.01
<&

0.001 v

Figure 5. Processing in parallel with 10 agents; JRuby

No surprise here. Math transcends programming languages.

Set size vs Latency (ms)

1000
100 @ § g
10
® <
1 - - - - -
1 10 100 1000 10000 100000 1000000

Figure 6. Processing in parallel with 10 agents; JRuby

This interests me because we don’t see the same trend in MRI Ruby. Might have to
run this for 1e8, 1e9, and 1e10 data sets to see if we start to dip below the 0 line,
which would indicate we’ve started to achieve a performance gain.

Also, there seems to be more variation within populations.

Agent pool vs Margin of error
0.06
0.05
0.04
0.03
0.02 ®

0.01 s
0 @
1 10 100 1000 10000

Figure 7. Parallel processing with 1e6 data points; JRuby

No surprise here.

Agent pool vs Latency (ms)

10000

1000 0

I B

10

1 10 100 1000 10000

Figure 8. Parallel processing with 1e6 data points; JRuby

Here’s what really cripples my thesis that distributed processing in JRuby would be
better than single-threaded computation of an IQM. If it were true, I'd have
expected to see that as we increase the # of threads, we dip below the 0 line to
achieve a performance boost.

Further Investigation:

1e6 data points seems to be below the threshold for a potential performance boost
in JRuby. Furthermore, anything over 10,000 threads seems to hurt us. I'll need to
investigate what this looks like at 1e9 data points and above, as well as more than
10 threads but less than 10,000.

Other interesting notes:
* JRuby took significantly longer to calculate the same values:
o N=1le6: MRI (209ms, 0 = 7.7), JRuby (415ms, o = 21.8)
* In MRI Ruby, single-threaded computation of a fixed-size data set did not
vary with increased agent pool size conditions, but in JRuby it did.
* JRuby can’t allocate enough memory to have a subset of 1e5 on a single
thread.

Check out Appendix B for evidence that after a certain point, JRuby threading does
boost performance.

Appendix A: Cheating by not shuffling before parallel distribution

MRI Ruby:

Set size vs Margin of error

1 10 100 1000 10000 100000

0.1 <
0.01
0.001 ®

0.0001

Agent pool vs Margin of error

0.12
0.1
0.08
0.06
0.04
0.02 PN
0 e &
1 10 100 1000
JRuby:
Set size vs Margin of error
1
1 10 100 1000 10000 100000
0.1
<
<
001 <
0.001 <&
Agent pool vs Margin of error
0.12
0.1
0.08
0.06
0.04
0.02 ®
o < <
1 10 100 1000
Result:

Set size vs Latency (ms)

10
1000000

<
<
8
1
1 10 @ 1@0 1@0 10%00 10@00

8 0.1

Agent pool vs Latency (ms)

1800

® 1600 e
1400
1200
1000
800
600
400
200
0 [V o é?
10000 | -200 1 10 100 1000 10000

Set size vs Latency (ms)

éé§§§

1000000

L 2 4

<

1 10 100 1000 10000 100000 1000000

Agent pool vs Latency (ms)
1400

< 1200

L0>¢ o204

1000

800

600

400

200

10000

10000 -200

Parallel information is still useless in MRI; somehow faster at small data sets?
If we don’t shuffle, we get a speed increase at the cost of accuracy.

Appendix B: 1e5, 1e6, 1e7 data set size with 1000 agents, JRuby

Set size vs Latency (ms)

1000

0 ¢ ¢

1 10 100 1000 10000 100000 1000000 10000000
-1000

-2000

-3000

-4000
-5000 %

-6000

Result: Holy shit it worked! That is way faster!

